Site map |
||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
combined refinement will be switched on by setting NDEVICES=...
to the number of devices in the BGMN task description *.sav file.
As a basic principle, combined refinement has multiple wavelength
distributions, multiple device functions etc. In following, most of
the entries in the *.sav file will be enriched by an additional (leftmost)
index for the device number:
RU→RU[i],
EPS1→EPS1[i],
EPS2→EPS2[i],
EPS3→EPS3[i],
EPS4→EPS4[i],
LAMBDA→LAMBDA[i],
SYNCHROTRON→SYNCHROTRON[i],
NEUTRONS→NEUTRONS[i],
VERZERR→VERZERR[i],
POL→POL[i],
VAL[j]→VAL[i,j],
WMIN→WMIN[i],
WMAX→WMAX[i],
CUT[j]→CUT[i,j],
DIAGRAMM→DIAGRAMM[i],
OUTPUT→OUTPUT[i] etc.
Note: For the moment, the BGMNwin GUI does not understand the
DIAGRAMM[i] entries. As a workaround, one may set an additional
non-indexed DIAGRAMM entry, thus that diagram will be displayed
during refinement.
No changes are to the LIST and STRUC[i] entries.
The file as refered by the LIST entry will contain results
for all devices. Structure description files *.str may contain
several new items:
DeviceSelect(i,...) may be inserted at any position in the
*.str file. In following, all subsequent entries in the
*.str file will be valid only for the selected devices.
Note: At least lattice parameters and space group must be unique for one
structure. In following DeviceSelect will be ignored for lattice
parameter and space group detection.
PO=SPHAR2 etc.
In difference to GEWICHT=SPHAR2 etc, PO will
set a pure preferred orientation model with mean value 1. You must give an additional
scalar value for GEWICHT (or GEWICHT[1]) to scale the calculated to the measured pattern, for that
reason. Both PO plus GEWICHT will be used in
combination. This is useful in case of multidevice evaluation of a multiphase
sample: The phase's scale factors will be of unique ratio for all the devices.
But preferred orientation of a phase will change between devices, in general.
In following, the PO feature has to be used. Note:
PO=SPHAR... and GEWICHT=SPHAR... are mutual
exclusive for a given device. In following, you may not use
GEWICHT=SPHAR0 for defining a scalar value of
GEWICHT. You must use PARAM=GEWICHT=0_0 instead.
Attention: In contrast to GEWICHT=SPHARx, there is no
automatic switch-down for PO=SPHARx.
idev refers to the actual device number, ifxray
is a logical switch which is true in case the actual device is an X-ray one,
ifsynchrotron is a logical switch which is true in case the
actual device is a synchrotron one and ifneutrons is a logical
switch which is true in case the actual device is a neutrons one.
As a first step, the BGMN control file BleiTitanat.sav
is set up:
NDEVICES=2 NEUTRONS[1]=0.1548 PI=2*acos(0) HWB=sqrt(sqr(0.204)+sqr(0.21*sin(THETA*PI/180)*tan((90-zweiTheta)*PI/180))) VERZERR[1]=HWB*PI/(720*sqrt(sqrt(2)-1)) VAL[1,1]=BleiTitanat_neutronen.dat WMIN[1]=10 OUTPUT[1]=BleiTitanat_neutronen DIAGRAMM[1]=BleiTitanat_neutronen PARAM[1]=EPS1[1]=0_-0.005^0.005 PARAM[2]=EPS2[1]=0_-0.005^0.005 LAMBDA[2]=mo1 VERZERR[2]=device_xray % Germanium-Monochromator A=5.658 (111)? d=3.267 A POL=sqr(cos(12.46*PI/180)) VAL[2,1]=BleiTitanat_xray.dat OUTPUT[2]=BleiTitanat_xray DIAGRAMM[2]=BleiTitanat_xray PARAM[3]=EPS1[2]=0_-0.005^0.005 PARAM[4]=EPS2[2]=0_-0.005^0.005 STRUC[1]=PbTiO3.str STRUC[2]=PbO_beta_Massicot.str gdev[1]=1 PARAM[5]=gdev[2]=1_0 denom=PbObetaMassicot+PbTiO3 GOAL[1]=PbTiO3/denom GOAL[2]=PbObetaMassicot/denom LIST=BleiTitanat PROTOKOLL=YAs you may see, we have introduced indexed
EPS1/EPS2
for both the devices as parameter. A fifth parameter gdev[2]
controls the principal ratio of intensities between both the devices. We use a
named wavelength for the Mo Kα1
radiation, Pb has remarkable f'=-3.39 plus f"=10.11 for Mo Kα.
The next step will be setting up PbTiO3 and PbO structure files
for combined refinement.
File PbTiO3.str:
PHASE=PbTiO3_90693 SpacegroupNo=99 Setting=1 HermannMauguin=P4mm // PARAM=A=0.3904_0.3884^0.3923 PARAM=C=0.4135_0.4114^0.4155 // RP=4 PARAM=B1=0_0^0.01 PARAM=k1=0_0^1 ANISOLIMIT=0 ANISO4LIMIT=0 k2=ANISO4^0.001 // neutron data have no PO DeviceSelect(2) PO=SPHAR6 DeviceSelect(1,2) PARAM=GEWICHT=0_0 GEWICHT[1]=gdev[idev]*GEWICHT*ifthenelse(ifdef(d),exp(-my*d*3/4),1) GOAL:PbTiO3=GEWICHT GOAL=GrainSize(1,0,0) GOAL=sqrt(ANISO(k2,1,0,0)) GOAL=sqrt(ANISO(k2,0,0,1)) GOAL=sqrt(ANISO(k2,1,1,0)) GOAL=sqrt(ANISO(k2,sqrt(2),0,1)) GOAL=sqrt(ANISO(k2,1,1,1)) DeviceSelect(2) GOAL=my DeviceSelect(1,2) E=PB Wyckoff=a z=0 DeviceSelect(1) PARAM=TDS=0.0053_0^0.02 DeviceSelect(2) PARAM=TDS=0.0053_0^0.02 DeviceSelect(1,2) E=TI Wyckoff=b PARAM=z=0.5281_0.5^0.55 DeviceSelect(1) PARAM=TDS=0.0029_0^0.005 DeviceSelect(2) PARAM=TDS=0.0029_0^0.01 DeviceSelect(1,2) E=O Wyckoff=c PARAM=z=0.6130_0.58^0.64 DeviceSelect(1) PARAM=TDS=0.0142_0^0.03 DeviceSelect(2) PARAM=TDS=0.0142_0^0.03 DeviceSelect(1,2) E=O Wyckoff=b PARAM=z=0.1339_0.1^0.16 DeviceSelect(1) PARAM=TDS=0.0142_0^0.03 DeviceSelect(2) PARAM=TDS=0.0142_0^0.03File
PbO_beta_Massicot.str:
PHASE=PbO_beta_Massicot SpacegroupNo=57 HermannMauguin=P2/b2_1/c2_1/m Group=Oxides Formula=Pb_O ICDD=381477 Reference=60135 PARAM=A=0.5893_0.5834^0.5952 PARAM=B=0.549_0.5435^0.5545 PARAM=C=0.4753_0.465^0.495 PARAM=B1=0_0^0.08 GOAL=GrainSize(1,0,0) RP=3 GEWICHT=SPHAR0 GEWICHT[1]=gdev[idev]*GEWICHT*ifthenelse(ifdef(d),exp(-my*d*3/4),1) GOAL:PbObetaMassicot=GEWICHT E=PB Wyckoff=d x=0.7703 y=0.4884 z=0 TDS=0.0107 E=O Wyckoff=d x=0.1347 y=0.5917 z=0 TDS=0.0114Some details of this structure files:
PbTiO3.str file, PO is enabled for X-ray data only.
This is due to the lack of appropriate sample movement in the neutron
device; the neutron sample was reported to have near to no PO. Both the
devices share one common GEWICHT. So we may control the ratio
of both the phase contents being identic for both the patterns.
GEWICHT is that of
GEWICHT[1] (BGMN first looks at that). So we may
introduce the principal intensity ratio gdev[2] into this
variable. For convenience, we have defined gdev[1]=1 in the
*.sav file.
GEWICHT[1] by the inverse value.
ANISO4 by setting
ANISOLIMIT=0 plus ANISO4LIMIT=0.
Running BGMN on the BleiTitanat.sav control
file will produce the following file BleiTitanat.lst:
Rietveld refinement to file(s) BleiTitanat_neutronen.dat BleiTitanat_xray.dat
BGMN version 5.0.19, 4500 measured points, 650 peaks, 91 parameters
Start: Tue May 18 17:34:28 2010; End: Tue May 18 17:35:05 2010
71 iteration steps
device 1: Rp=6.48% Rpb=12.28% R=8.94% Rwp=8.55% Rexp=3.02%
Durbin-Watson d=0.75
1-rho=1.04%
device 2: Rp=2.43% Rpb=14.69% R=3.42% Rwp=2.94% Rexp=2.54%
Durbin-Watson d=1.34
1-rho=0.663%
Global parameters and GOALs
****************************
PbTiO3/denom=0.9637+-0.0041
PbObetaMassicot/denom=0.0363+-0.0041
EPS1[1]=0.00111+-0.00018
EPS2[1]=-0.00095+-0.00017
EPS1[2]=-0.00422+-0.00029
EPS2[2]=0.00415+-0.00028
gdev[2]=0.2495+-0.0023
Local parameters and GOALs for phase PbTiO3_90693
******************************************************
SpacegroupNo=99
HermannMauguin=P4mm
device 1: XrayDensity=7.978
device 2: XrayDensity=7.978
Rphase=9.25%
UNIT=NM
A=0.389902+-0.000021
C=0.414957+-0.000023
B1=0.004079+-0.000062
k1=1.00000
GEWICHT=2.207+-0.011
GrainSize(1,0,0)=78.0+-1.2
sqrt(ANISO(k2,1,0,0))=0.000806+-0.000044
sqrt(ANISO(k2,0,0,1))=0.003062+-0.000049
sqrt(ANISO(k2,1,1,0))=0.000681+-0.000038
sqrt(ANISO(k2,sqrt(2),0,1))=0.000811+-0.000034
sqrt(ANISO(k2,1,1,1))=0.000754+-0.000035
my=0.069637+-0.000011
k2=ANISO4, MeanValue(k2)=0.000000292545
Atomic positions for phase PbTiO3_90693 in view of device 1
------------------------------------------------------------
1 0.0000 0.0000 0.0000 E=(PB(1.0000))
TDS=0.00562+-0.00026
1 0.5000 0.5000 0.5377 E=(TI(1.0000))
z=0.53771+-0.00064
TDS=0.00352+-0.00054
2 0.5000 0.0000 0.6146 E=(O(1.0000))
z=0.61461+-0.00052
TDS=0.00585+-0.00024
1 0.5000 0.5000 0.1097 E=(O(1.0000))
z=0.10971+-0.00060
TDS=0.00453+-0.00036
Atomic positions for phase PbTiO3_90693 in view of device 2
------------------------------------------------------------
1 0.0000 0.0000 0.0000 E=(PB(1.0000))
TDS=0.00842+-0.00029
1 0.5000 0.5000 0.5377 E=(TI(1.0000))
z=0.53771+-0.00064
TDS=0.0053+-0.0010
2 0.5000 0.0000 0.6146 E=(O(1.0000))
z=0.61461+-0.00052
TDS=0.0043+-0.0032
1 0.5000 0.5000 0.1097 E=(O(1.0000))
z=0.10971+-0.00060
TDS=0.0085+-0.0049
Local parameters and GOALs for phase PbO_beta_Massicot
******************************************************
SpacegroupNo=57
HermannMauguin=P2/b2_1/c2_1/m
device 1: XrayDensity=9.435
device 2: XrayDensity=9.435
Rphase=9.01%
UNIT=NM
A=0.583400
B=0.5540+-0.0014
C=0.4861+-0.0011
B1=0.0500+-0.0074
GrainSize(1,0,0)=8.5+-1.2
GEWICHT=SPHAR0=0.0830+-0.0097
Atomic positions for phase PbO_beta_Massicot in view of device 1
------------------------------------------------------------
4 0.7703 0.4884 0.2500 E=(PB(1.0000))
4 0.1347 0.5917 0.2500 E=(O(1.0000))
Atomic positions for phase PbO_beta_Massicot in view of device 2
------------------------------------------------------------
4 0.7703 0.4884 0.2500 E=(PB(1.0000))
4 0.1347 0.5917 0.2500 E=(O(1.0000))
The atomic position results in view of both the devices are
identic in this case. Different thermal displacement factors TDS
between X-ray and neutron data are a known issue: X-ray and neutron
TDS origin from the movement of electronic shell and atomic
nucleus, respectively. We get a strong anisotropic micro strain for
PbTiO3: Maximum at (001), somewhat enlarged for (100) compared
to (110).
Literature:
[1] H. Boysen, Ferroelastic phase transitions and domain
structures in powders, Z. Kristallogr. 220 (2005) 726-734
[2] H. Boysen, Coherence effects in the scattering from
domain structures, J. Phys. Condens. Matter 19 (2007) 275206
*.sav file, e.g.
SYNCHROTRON=0.0657096The pitfall of such a notation: all anomalous dispersion will be set to zero. But there are cases you are in need for anomalous dispersion. An example is a pair of patterns measured on a sychrotron, one just below an absorption edge of a certain element and the other just above. In such case, you must provide named wavelengths. All the common X-ray tube anodes are already present as named wavelengths. So you may use the files
cu.* as a guide, for example.
As a first, we must select a name, let it be syn0657096.
Then provide a wavelength file. Its content is the wavelength distribution.
Each line must contain three values:
intensity position width
position and width are in the reciprocal nanometer
scale. width may be zero describing a sharp delta function.
The first line of the wavelength file is a header line. The only mandatory
entry is ILAM, the number of lorentzians used to describe
the wavelength distribution. In our case, we create a file
syn0657096.lam containing
ILAM=1 1 1/0.0657096 0and place it in the
bgmnwin directory, where all the other
*.lam files reside. For enabling anomalous dispersion, you must
provide a file syn0657096.ano. It may contain several lines, each
with three fields:
element f' f"Here is a on-line calculator for plotting f' plus f".
You may also provide a file syn0657096.mdr. The extension
mdr stands for my div rho, where my
is the linear dispersion coefficient of the solid element and rho
is its density, which then in turn gives the mass absorption coefficient. If a
*.mdr file is present, BGMN will provide linear absorption
coefficients for the phases, from which you may calculate micro absorption
corrections.
Having provided all that files, you now may place an entry
SYNCHROTRON=syn0657096into your
*.sav file and BGMN will use anomalous scattering
for your synchrotron wavelength. You still should use
SYNCHROTRON=, not LAMBDA=, which will slightly
change the behaviour of BGMN (synchrotron lines are sharper and have no
tube tails at all).