Site map |
||||
combined refinement will be switched on by setting NDEVICES=...
to the number of devices in the BGMN task description *.sav
file.
As a basic principle, combined refinement has multiple wavelength
distributions, multiple device functions etc. In following, most of
the entries in the *.sav file will be enriched by an additional (leftmost)
index for the device number:
RU
→RU[i]
,
EPS1
→EPS1[i]
,
EPS2
→EPS2[i]
,
EPS3
→EPS3[i]
,
EPS4
→EPS4[i]
,
LAMBDA
→LAMBDA[i]
,
SYNCHROTRON
→SYNCHROTRON[i]
,
NEUTRONS
→NEUTRONS[i]
,
VERZERR
→VERZERR[i]
,
POL
→POL[i]
,
VAL[j]
→VAL[i,j]
,
WMIN
→WMIN[i]
,
WMAX
→WMAX[i]
,
CUT[j]
→CUT[i,j]
,
DIAGRAMM
→DIAGRAMM[i]
,
OUTPUT
→OUTPUT[i]
etc.
Note: For the moment, the BGMNwin GUI does not understand the
DIAGRAMM[i]
entries. As a workaround, one may set an additional
non-indexed DIAGRAMM
entry, thus that diagram will be displayed
during refinement.
No changes are to the LIST
and STRUC[i]
entries.
The file as refered by the LIST
entry will contain results
for all devices. Structure description files *.str
may contain
several new items:
DeviceSelect(i,...)
may be inserted at any position in the
*.str
file. In following, all subsequent entries in the
*.str
file will be valid only for the selected devices.
Note: At least lattice parameters and space group must be unique for one
structure. In following DeviceSelect
will be ignored for lattice
parameter and space group detection.
PO=SPHAR2
etc.
In difference to GEWICHT=SPHAR2
etc, PO
will
set a pure preferred orientation model with mean value 1. You must give an additional
scalar value for GEWICHT
(or GEWICHT[1]
) to scale the calculated to the measured pattern, for that
reason. Both PO
plus GEWICHT
will be used in
combination. This is useful in case of multidevice evaluation of a multiphase
sample: The phase's scale factors will be of unique ratio for all the devices.
But preferred orientation of a phase will change between devices, in general.
In following, the PO
feature has to be used. Note:
PO=SPHAR...
and GEWICHT=SPHAR...
are mutual
exclusive for a given device. In following, you may not use
GEWICHT=SPHAR0
for defining a scalar value of
GEWICHT
. You must use PARAM=GEWICHT=0_0
instead.
Attention: In contrast to GEWICHT=SPHARx
, there is no
automatic switch-down for PO=SPHARx
.
idev
refers to the actual device number, ifxray
is a logical switch which is true in case the actual device is an X-ray one,
ifsynchrotron
is a logical switch which is true in case the
actual device is a synchrotron one and ifneutrons
is a logical
switch which is true in case the actual device is a neutrons one.
As a first step, the BGMN control file BleiTitanat.sav
is set up:
NDEVICES=2 NEUTRONS[1]=0.1548 PI=2*acos(0) HWB=sqrt(sqr(0.204)+sqr(0.21*sin(THETA*PI/180)*tan((90-zweiTheta)*PI/180))) VERZERR[1]=HWB*PI/(720*sqrt(sqrt(2)-1)) VAL[1,1]=BleiTitanat_neutronen.dat WMIN[1]=10 OUTPUT[1]=BleiTitanat_neutronen DIAGRAMM[1]=BleiTitanat_neutronen PARAM[1]=EPS1[1]=0_-0.005^0.005 PARAM[2]=EPS2[1]=0_-0.005^0.005 LAMBDA[2]=mo1 VERZERR[2]=device_xray % Germanium-Monochromator A=5.658 (111)? d=3.267 A POL=sqr(cos(12.46*PI/180)) VAL[2,1]=BleiTitanat_xray.dat OUTPUT[2]=BleiTitanat_xray DIAGRAMM[2]=BleiTitanat_xray PARAM[3]=EPS1[2]=0_-0.005^0.005 PARAM[4]=EPS2[2]=0_-0.005^0.005 STRUC[1]=PbTiO3.str STRUC[2]=PbO_beta_Massicot.str gdev[1]=1 PARAM[5]=gdev[2]=1_0 denom=PbObetaMassicot+PbTiO3 GOAL[1]=PbTiO3/denom GOAL[2]=PbObetaMassicot/denom LIST=BleiTitanat PROTOKOLL=YAs you may see, we have introduced indexed
EPS1
/EPS2
for both the devices as parameter. A fifth parameter gdev[2]
controls the principal ratio of intensities between both the devices. We use a
named wavelength for the Mo Kα1
radiation, Pb has remarkable f'=-3.39 plus f"=10.11 for Mo Kα.
The next step will be setting up PbTiO3 and PbO structure files
for combined refinement.
File PbTiO3.str
:
PHASE=PbTiO3_90693 SpacegroupNo=99 Setting=1 HermannMauguin=P4mm // PARAM=A=0.3904_0.3884^0.3923 PARAM=C=0.4135_0.4114^0.4155 // RP=4 PARAM=B1=0_0^0.01 PARAM=k1=0_0^1 ANISOLIMIT=0 ANISO4LIMIT=0 k2=ANISO4^0.001 // neutron data have no PO DeviceSelect(2) PO=SPHAR6 DeviceSelect(1,2) PARAM=GEWICHT=0_0 GEWICHT[1]=gdev[idev]*GEWICHT*ifthenelse(ifdef(d),exp(-my*d*3/4),1) GOAL:PbTiO3=GEWICHT GOAL=GrainSize(1,0,0) GOAL=sqrt(ANISO(k2,1,0,0)) GOAL=sqrt(ANISO(k2,0,0,1)) GOAL=sqrt(ANISO(k2,1,1,0)) GOAL=sqrt(ANISO(k2,sqrt(2),0,1)) GOAL=sqrt(ANISO(k2,1,1,1)) DeviceSelect(2) GOAL=my DeviceSelect(1,2) E=PB Wyckoff=a z=0 DeviceSelect(1) PARAM=TDS=0.0053_0^0.02 DeviceSelect(2) PARAM=TDS=0.0053_0^0.02 DeviceSelect(1,2) E=TI Wyckoff=b PARAM=z=0.5281_0.5^0.55 DeviceSelect(1) PARAM=TDS=0.0029_0^0.005 DeviceSelect(2) PARAM=TDS=0.0029_0^0.01 DeviceSelect(1,2) E=O Wyckoff=c PARAM=z=0.6130_0.58^0.64 DeviceSelect(1) PARAM=TDS=0.0142_0^0.03 DeviceSelect(2) PARAM=TDS=0.0142_0^0.03 DeviceSelect(1,2) E=O Wyckoff=b PARAM=z=0.1339_0.1^0.16 DeviceSelect(1) PARAM=TDS=0.0142_0^0.03 DeviceSelect(2) PARAM=TDS=0.0142_0^0.03File
PbO_beta_Massicot.str
:
PHASE=PbO_beta_Massicot SpacegroupNo=57 HermannMauguin=P2/b2_1/c2_1/m Group=Oxides Formula=Pb_O ICDD=381477 Reference=60135 PARAM=A=0.5893_0.5834^0.5952 PARAM=B=0.549_0.5435^0.5545 PARAM=C=0.4753_0.465^0.495 PARAM=B1=0_0^0.08 GOAL=GrainSize(1,0,0) RP=3 GEWICHT=SPHAR0 GEWICHT[1]=gdev[idev]*GEWICHT*ifthenelse(ifdef(d),exp(-my*d*3/4),1) GOAL:PbObetaMassicot=GEWICHT E=PB Wyckoff=d x=0.7703 y=0.4884 z=0 TDS=0.0107 E=O Wyckoff=d x=0.1347 y=0.5917 z=0 TDS=0.0114Some details of this structure files:
PbTiO3.str
file, PO is enabled for X-ray data only.
This is due to the lack of appropriate sample movement in the neutron
device; the neutron sample was reported to have near to no PO. Both the
devices share one common GEWICHT
. So we may control the ratio
of both the phase contents being identic for both the patterns.
GEWICHT
is that of
GEWICHT[1]
(BGMN first looks at that). So we may
introduce the principal intensity ratio gdev[2]
into this
variable. For convenience, we have defined gdev[1]=1
in the
*.sav
file.
GEWICHT[1]
by the inverse value.
ANISO4
by setting
ANISOLIMIT=0
plus ANISO4LIMIT=0
.
Running BGMN on the BleiTitanat.sav
control
file will produce the following file BleiTitanat.lst
:
Rietveld refinement to file(s) BleiTitanat_neutronen.dat BleiTitanat_xray.dat BGMN version 5.0.19, 4500 measured points, 650 peaks, 91 parameters Start: Tue May 18 17:34:28 2010; End: Tue May 18 17:35:05 2010 71 iteration steps device 1: Rp=6.48% Rpb=12.28% R=8.94% Rwp=8.55% Rexp=3.02% Durbin-Watson d=0.75 1-rho=1.04% device 2: Rp=2.43% Rpb=14.69% R=3.42% Rwp=2.94% Rexp=2.54% Durbin-Watson d=1.34 1-rho=0.663% Global parameters and GOALs **************************** PbTiO3/denom=0.9637+-0.0041 PbObetaMassicot/denom=0.0363+-0.0041 EPS1[1]=0.00111+-0.00018 EPS2[1]=-0.00095+-0.00017 EPS1[2]=-0.00422+-0.00029 EPS2[2]=0.00415+-0.00028 gdev[2]=0.2495+-0.0023 Local parameters and GOALs for phase PbTiO3_90693 ****************************************************** SpacegroupNo=99 HermannMauguin=P4mm device 1: XrayDensity=7.978 device 2: XrayDensity=7.978 Rphase=9.25% UNIT=NM A=0.389902+-0.000021 C=0.414957+-0.000023 B1=0.004079+-0.000062 k1=1.00000 GEWICHT=2.207+-0.011 GrainSize(1,0,0)=78.0+-1.2 sqrt(ANISO(k2,1,0,0))=0.000806+-0.000044 sqrt(ANISO(k2,0,0,1))=0.003062+-0.000049 sqrt(ANISO(k2,1,1,0))=0.000681+-0.000038 sqrt(ANISO(k2,sqrt(2),0,1))=0.000811+-0.000034 sqrt(ANISO(k2,1,1,1))=0.000754+-0.000035 my=0.069637+-0.000011 k2=ANISO4, MeanValue(k2)=0.000000292545 Atomic positions for phase PbTiO3_90693 in view of device 1 ------------------------------------------------------------ 1 0.0000 0.0000 0.0000 E=(PB(1.0000)) TDS=0.00562+-0.00026 1 0.5000 0.5000 0.5377 E=(TI(1.0000)) z=0.53771+-0.00064 TDS=0.00352+-0.00054 2 0.5000 0.0000 0.6146 E=(O(1.0000)) z=0.61461+-0.00052 TDS=0.00585+-0.00024 1 0.5000 0.5000 0.1097 E=(O(1.0000)) z=0.10971+-0.00060 TDS=0.00453+-0.00036 Atomic positions for phase PbTiO3_90693 in view of device 2 ------------------------------------------------------------ 1 0.0000 0.0000 0.0000 E=(PB(1.0000)) TDS=0.00842+-0.00029 1 0.5000 0.5000 0.5377 E=(TI(1.0000)) z=0.53771+-0.00064 TDS=0.0053+-0.0010 2 0.5000 0.0000 0.6146 E=(O(1.0000)) z=0.61461+-0.00052 TDS=0.0043+-0.0032 1 0.5000 0.5000 0.1097 E=(O(1.0000)) z=0.10971+-0.00060 TDS=0.0085+-0.0049 Local parameters and GOALs for phase PbO_beta_Massicot ****************************************************** SpacegroupNo=57 HermannMauguin=P2/b2_1/c2_1/m device 1: XrayDensity=9.435 device 2: XrayDensity=9.435 Rphase=9.01% UNIT=NM A=0.583400 B=0.5540+-0.0014 C=0.4861+-0.0011 B1=0.0500+-0.0074 GrainSize(1,0,0)=8.5+-1.2 GEWICHT=SPHAR0=0.0830+-0.0097 Atomic positions for phase PbO_beta_Massicot in view of device 1 ------------------------------------------------------------ 4 0.7703 0.4884 0.2500 E=(PB(1.0000)) 4 0.1347 0.5917 0.2500 E=(O(1.0000)) Atomic positions for phase PbO_beta_Massicot in view of device 2 ------------------------------------------------------------ 4 0.7703 0.4884 0.2500 E=(PB(1.0000)) 4 0.1347 0.5917 0.2500 E=(O(1.0000))The atomic position results in view of both the devices are identic in this case. Different thermal displacement factors
TDS
between X-ray and neutron data are a known issue: X-ray and neutron
TDS
origin from the movement of electronic shell and atomic
nucleus, respectively. We get a strong anisotropic micro strain for
PbTiO3: Maximum at (001), somewhat enlarged for (100) compared
to (110).
Literature:
[1] H. Boysen, Ferroelastic phase transitions and domain
structures in powders, Z. Kristallogr. 220 (2005) 726-734
[2] H. Boysen, Coherence effects in the scattering from
domain structures, J. Phys. Condens. Matter 19 (2007) 275206
*.sav
file, e.g.
SYNCHROTRON=0.0657096The pitfall of such a notation: all anomalous dispersion will be set to zero. But there are cases you are in need for anomalous dispersion. An example is a pair of patterns measured on a sychrotron, one just below an absorption edge of a certain element and the other just above. In such case, you must provide named wavelengths. All the common X-ray tube anodes are already present as named wavelengths. So you may use the files
cu.*
as a guide, for example.
As a first, we must select a name, let it be syn0657096
.
Then provide a wavelength file. Its content is the wavelength distribution.
Each line must contain three values:
intensity position width
position
and width
are in the reciprocal nanometer
scale. width
may be zero describing a sharp delta function.
The first line of the wavelength file is a header line. The only mandatory
entry is ILAM
, the number of lorentzians used to describe
the wavelength distribution. In our case, we create a file
syn0657096.lam
containing
ILAM=1 1 1/0.0657096 0and place it in the
bgmnwin
directory, where all the other
*.lam
files reside. For enabling anomalous dispersion, you must
provide a file syn0657096.ano
. It may contain several lines, each
with three fields:
element f' f"Here is a on-line calculator for plotting f' plus f".
You may also provide a file syn0657096.mdr
. The extension
mdr stands for my div rho, where my
is the linear dispersion coefficient of the solid element and rho
is its density, which then in turn gives the mass absorption coefficient. If a
*.mdr
file is present, BGMN will provide linear absorption
coefficients for the phases, from which you may calculate micro absorption
corrections.
Having provided all that files, you now may place an entry
SYNCHROTRON=syn0657096into your
*.sav
file and BGMN will use anomalous scattering
for your synchrotron wavelength. You still should use
SYNCHROTRON=
, not LAMBDA=
, which will slightly
change the behaviour of BGMN (synchrotron lines are sharper and have no
tube tails at all).